겐첸 시스템을 MathJax로! bussproofs

bussproofs 패키지를 통해 다음과 같은 증명들을 (MathJax를 비롯한) \(\TeX\) 환경에서 표현할 수 있다.

A User Guide[링크]


$$
\begin{prooftree}
\AxiomC{$P$}
\AxiomC{$\neg P$}
\BinaryInfC{$Q$}
\end{prooftree}
\tag{EFQ}
$$

코드:

$$
\begin{prooftree}
    \AxiomC{$P$}
    \AxiomC{$\neg P$}
        \BinaryInfC{$Q$}
\end{prooftree}
\tag{EFQ}
$$

$$
\begin{prooftree}
\def\fCenter{\mbox{ $\vdash$ }}
\Axiom$A, B, C\fCenter D$
\UnaryInf$A, B\fCenter C \supset D$
\end{prooftree}
\tag{RD}
$$

코드:

$$
\begin{prooftree}
    \def\fCenter{\mbox{ $\vdash$ }}
    \Axiom$A, B, C\fCenter D$
    \UnaryInf$A, B\fCenter C \supset D$
\end{prooftree}
\tag{RD}
$$

$$
\begin{prooftree}
\AxiomC{$P$}
\AxiomC{}
\RightLabel{$\scriptsize{\text{AxPr}_1}$}
\UnaryInfC{$P \supset (Q\supset P)$}
\RightLabel{MP}
\BinaryInfC{$(Q\supset P)$}
\end{prooftree}
$$

코드:

$$
\begin{prooftree}
    \AxiomC{$P$}
\AxiomC{}
    \RightLabel{$\scriptsize{\text{AxPr}_1}$}
    \UnaryInfC{$P \supset (Q\supset P)$}
        \RightLabel{MP}
        \BinaryInfC{$(Q\supset P)$}
\end{prooftree}$$
댓글 보기